4 research outputs found

    Towards a European Health Research and Innovation Cloud (HRIC)

    Get PDF
    The European Union (EU) initiative on the Digital Transformation of Health and Care (Digicare) aims to provide the conditions necessary for building a secure, flexible, and decentralized digital health infrastructure. Creating a European Health Research and Innovation Cloud (HRIC) within this environment should enable data sharing and analysis for health research across the EU, in compliance with data protection legislation while preserving the full trust of the participants. Such a HRIC should learn from and build on existing data infrastructures, integrate best practices, and focus on the concrete needs of the community in terms of technologies, governance, management, regulation, and ethics requirements. Here, we describe the vision and expected benefits of digital data sharing in health research activities and present a roadmap that fosters the opportunities while answering the challenges of implementing a HRIC. For this, we put forward five specific recommendations and action points to ensure that a European HRIC: i) is built on established standards and guidelines, providing cloud technologies through an open and decentralized infrastructure; ii) is developed and certified to the highest standards of interoperability and data security that can be trusted by all stakeholders; iii) is supported by a robust ethical and legal framework that is compliant with the EU General Data Protection Regulation (GDPR); iv) establishes a proper environment for the training of new generations of data and medical scientists; and v) stimulates research and innovation in transnational collaborations through public and private initiatives and partnerships funded by the EU through Horizon 2020 and Horizon Europe

    Making green growth a reality: Reconciling sobriety with stakeholders' satisfaction.

    No full text
    The notion of sobriety is considered a key variable in various energy transition scenarios. Often associated with a form of punitive ecology, it is, nevertheless, possible to make it a component that supports green growth, by linking it to the concept of "satisfaction". In this work, we have invented a way to achieve both "digital", "economic", and "ecological" sobriety, while ensuring the satisfaction of the end user. Directly correlated to the production of goods or services, the satisfaction function is built on the well-documented marginal utility function, which measures the need (or not) to consume further resources to satisfy the economic agents. Hence, it is justified and exists because it stands for the expectations of end users and makes sure the latter is met. This product itself is a function of the allocation of a set of resources, mapped using activity-based costing tools (ABC method). In this work, we focus on an AI proof-of-concept and demonstrate that it is possible to reach numerical sobriety by controlling the size of the training dataset while ensuring roughly the same model performance. In general, we show that it is possible to preserve the efficiency of AI processes while significantly minimizing the need for resources. In this sense, after establishing an analytical model, we suggest reducing the amount of data required to train the machine learning (ML) models, while guaranteeing zero change in terms of performance (say their accuracy). We show that it affects the energy consumed, and, thereby, the associated cost (i.e., economic and ecological) and the associated CO2eq emission. We thus confirm the existence of a "triangle of sobriety". It is defined as a virtual circle governed by a digital-economic-ecological sovereignty. We also propose that if AI production processes have a potential for sobriety, all identical activities have the same characteristics, thus opening the path to green growth

    Towards a European health research and innovation cloud (HRIC)

    Full text link
    The European Union (EU) initiative on the Digital Transformation of Health and Care (Digicare) aims to provide the conditions necessary for building a secure, flexible, and decentralized digital health infrastructure. Creating a European Health Research and Innovation Cloud (HRIC) within this environment should enable data sharing and analysis for health research across the EU, in compliance with data protection legislation while preserving the full trust of the participants. Such a HRIC should learn from and build on existing data infrastructures, integrate best practices, and focus on the concrete needs of the community in terms of technologies, governance, management, regulation, and ethics requirements. Here, we describe the vision and expected benefits of digital data sharing in health research activities and present a roadmap that fosters the opportunities while answering the challenges of implementing a HRIC. For this, we put forward five specific recommendations and action points to ensure that a European HRIC: i) is built on established standards and guidelines, providing cloud technologies through an open and decentralized infrastructure; ii) is developed and certified to the highest standards of interoperability and data security that can be trusted by all stakeholders; iii) is supported by a robust ethical and legal framework that is compliant with the EU General Data Protection Regulation (GDPR); iv) establishes a proper environment for the training of new generations of data and medical scientists; and v) stimulates research and innovation in transnational collaborations through public and private initiatives and partnerships funded by the EU through Horizon 2020 and Horizon Europe
    corecore